Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

JAEA-ISCN development programs of advanced NDA technologies of nuclear material

Seya, Michio; Kobayashi, Naoki; Naoi, Yosuke; Hajima, Ryoichi; Soyama, Kazuhiko; Kureta, Masatoshi; Nakamura, Hironobu; Harada, Hideo

Book of Abstracts, Presentations and Papers of Symposium on International Safeguards; Linking Strategy, Implementation and People (Internet), 8 Pages, 2015/03

JAEA-ISCN has been implementing basic development programs of the advanced NDA technologies for nuclear material (NM) since 2011JFY (Japanese Fiscal Year), which are (1) NRF (Nuclear resonance fluorescence) NDA technology using laser Compton scattered (LCS) $$gamma$$-rays (intense mono-energetic $$gamma$$-rays), (2) Alternative to $$^{3}$$He neutron detection technology using ZnS/B$$_{2}$$O$$_{3}$$ ceramic scintillator, and (3) NRD (Neutron resonance densitometry) using NRTA (Neutron resonance transmission analysis) and NRCA (Neutron resonance capture analysis). These programs are going to be finished in 2014JFY and have demonstration tests in February - March 2015.

Journal Articles

Introduction to development of advanced safeguards and security NDA technologies by JAEA-ISCN

Seya, Michio; Kureta, Masatoshi; Soyama, Kazuhiko; Nakamura, Hironobu; Harada, Hideo; Hajima, Ryoichi

Proceedings of INMM 55th Annual Meeting (Internet), 10 Pages, 2014/07

JAEA has been implementing development programs of basic technologies of the following advanced NDA (non-destructive assay) of nuclear material (NM) for nuclear safeguards and security. (1) Alternative to $$^{3}$$He neutron detection using ZnS/B$$_{2}$$O$$_{3}$$ ceramic scintillator, (2) NRD (neutron resonance densitometry) using NRTA (neutron resonance transmission analysis) and NRCA (neutron resonance capture analysis), (3) NRF (nuclear resonance fluorescence)-NDA using laser Compton scattered (LCS) $$gamma$$-rays (intense mono-energetic $$gamma$$-rays). The development program (1) is for NDA systems that use ZnS/B$$_{2}$$O$$_{3}$$ ceramic scintillator as alternative neutron detector to $$^{3}$$He for coming shortage of its supply. The program (2) is for a NDA system of isotopic composition measurement (non-destructive mass spectroscopy) in targets such as particle-like melted fuel debris using NRTA and NRCA. The program (3) is for NDA systems using a specific NRF reaction of certain Pu/U isotope caused by mono-energetic LCS $$gamma$$-ray with energy tuned to the specific excited state of the isotope. This paper introduces above three programs.

Journal Articles

Neutron scintillators with high detection efficiency

Kojima, Takahiro*; Katagiri, Masaki; Tsutsui, Noriaki*; Imai, Koji*; Matsubayashi, Masahito; Sakasai, Kaoru

Nuclear Instruments and Methods in Physics Research A, 529(1-3), p.325 - 328, 2004/08

 Times Cited Count:39 Percentile:90.66(Instruments & Instrumentation)

no abstracts in English

3 (Records 1-3 displayed on this page)
  • 1